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ABSTRACT

 The objective of this thesis is to investigate different (non-destructive) evaluation 

methods to assess the effects of reactive aggregate size and reinforcement on ASR affected 

concrete. It has been shown in previous literature that reactive coarse aggregates lead to 

more expansion as opposed to reactive fine aggregates. However, there is a lack in the 

literature exhibiting this relationship using different evaluation methods, such as acoustic 

emission (AE) and ultrasonic pulse velocity (UPV). Also, the literature does not emphasize 

the role this relationship plays when the concrete is imposed with stress boundary 

conditions. Non-destructive test methods, including acoustic emission, are becoming a 

more widely used method of testing concrete, so this thesis will investigate how these non-

destructive evaluation methods reflect early ASR damage in concrete; the methods will 

also help to further understand the roles aggregate size and reinforcement play in ASR 

infected concrete’s degradation process. 

 The tests elaborated on in this thesis were completed over two and a half years. 

Each test has one confined, one unconfined, and one control specimen. The confined 

specimen is fitted with steel reinforcement. The coarse reactive coarse aggregate concrete 

was initially tested to understand the affect boundary conditions have on the ASR reaction. 

The results of this thesis show that the unconfined reactive fine specimen experienced 

isotropic expansion. In addition, the effect of reinforcement is more pronounced in the 

reactive coarse aggregate specimens than in the reactive fine specimens. When evaluating 

the non-destructive test methods in terms of contrasting damage between the reactive and 
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control specimens, the evaluation methods are ranked as follows (largest difference to 

smallest difference): acoustic emission (cumulative signal strength), expansion 

measurements, visual crack measurements, followed by UPV. 

The novelty of this thesis comes from the innovative method of evaluating the 

accuracy of different non-destructive test methods for ASR affected concrete, as well as 

investigating the effects of reinforcement and different aggregate sizes on ASR affected 

concrete with the non-destructive (most notably acoustic emission) test methods.



www.manaraa.com

 

vii 

TABLE OF CONTENTS 

Dedication ........................................................................................................................... iii 

Acknowledgements ............................................................................................................ iv 

Abstract ................................................................................................................................ v 

List of Tables ...................................................................................................................... ix 

List of Figures ...................................................................................................................... x 

List of Symbols .................................................................................................................. xii 

CHAPTER 1: General Introduction .................................................................................... 1 

1.1 Layout of Thesis ................................................................................................ 2 

1.2 General Introduction .......................................................................................... 2 

CHAPTER 2: Literature Review ......................................................................................... 5 

2.1 Alkali-Silica Reaction ....................................................................................... 6 

2.2 Acoustic Emission ........................................................................................... 15 

2.3 Additional Analysis Methods .......................................................................... 24 

CHAPTER 3: Experimental Setup .................................................................................... 27 

3.1 Specimen Preparation ...................................................................................... 28 

3.2 Test Setup and Instrumentation ...................................................................... .32 

CHAPTER 4: Results and Discussion ............................................................................... 36 
 

4.1 Introduction ..................................................................................................... 37 

4.2 Strain ................................................................................................................ 39 

4.3 Acoustic Emission ........................................................................................... 44 



www.manaraa.com

 

viii 

4.4 Crack Growth .................................................................................................. 48 

4.5 Ultrasonic Pulse Velocity ................................................................................ 52 

4.6 Evaluation Methods Comparison .................................................................... 54 

CHAPTER 5: Summary and Conclusions ......................................................................... 61 

5.1 Summary of Test ............................................................................................. 62 

5.2 Strain ................................................................................................................ 63 

5.3 Acoustic Emission ........................................................................................... 64 

5.4 Crack Growth .................................................................................................. 64 

5.5 UPV ................................................................................................................. 65 

5.6 Effectiveness of Evaluation Methods .............................................................. 65 

5.7 Additional Conclusions ................................................................................... 65 

References ......................................................................................................................... 66 

  



www.manaraa.com

 

ix 

LIST OF TABLES

Table 3.1 Aggregate Information (Malone 2019) ............................................................. 29 

Table 3.2 Cement Information (Malone 2019) .................................................................. 30 

Table 3.3 Theoretical Mix Design (SSD) (Malone 2019) ................................................. 31 

Table 3.4 Sensor Locations ............................................................................................... 32 

Table 3.5 Data Acquisition Setting ................................................................................... 34 

Table 4.1 Equivalent Final Average Directional Strain .................................................... 42   

Table 4.2 Maximum and Average Crack Widths .............................................................. 50    

Table 4.3 Average Speed and Direction of Pulse Wave .................................................... 53 

Table 4.4 Percent Differences (Strain) from Control to Reactive Specimens ................... 56 

Table 4.5 Percent Differences (CSS) from Control to Reactive Specimens ..................... 57 

Table 4.6 Amount of Days Prior to First Meaningful Data ............................................... 57 

Table 4.7 Percent Difference (Wave Speed) from Control to Fine ................................... 58 



www.manaraa.com

 

x 

LIST OF FIGURES

Figure 2.1 ASR affected Dam in Norway (Thomas 2013) .................................................. 6 

Figure 2.2 ASR Cracking scanned by electron micrograph 
(Jozwiak-niedzwiedzka 2018) ........................................................................................... 11 
 
Figure 2.3 Acoustic Emission Setup (Modeled after Soltangharaei 2018) ....................... 15 

Figure 2.4 Acoustic Emission Waveform (Modeled after Soltangharaei 2018) ............... 19 

Figure 3.1 Gradation of Aggregates (Malone 2019) ......................................................... 29 

Figure 3.2 2D Reinforcement Plan (Malone 2019) ........................................................... 30 

Figure 3.3 Rebar Placement Prior to Casting (Malone 2019) ........................................... 30 

Figure 3.4 2-D Reinforcement of Specimens (Malone 2019) ........................................... 31  

Figure 3.5 Sensor Locations Depicted (Not to Scale) ....................................................... 33 

Figure 3.6 Control Specimen inside Chamber .................................................................. 35  

Figure 4.1 Strain through 250 Days .................................................................................. 38  

Figure 4.2 Average Directional Strains through Adjusted Days ....................................... 41 

Figure 4.3 Aggregates Used in Testing ............................................................................. 43 

Figure 4.4 CSS and Amplitude versus Time ..................................................................... 44  

Figure 4.5 CSS and Amplitude versus Adjusted Time ...................................................... 46  

Figure 4.6 Confined Fine Crack 3 Width .......................................................................... 48  

Figure 4.7 Maximum and Average Crack Widths ............................................................. 49  

Figure 4.8 Examples of Cracks on Concrete Surfaces ...................................................... 50  

Figure 4.9 Average Speed of Pulse Wave by Direction in Fine Specimen ....................... 53 



www.manaraa.com

 

xi 

Figure 4.10 Control Specimen’s Volumetric Strain .......................................................... 55 

Figure 4.11 Cumulative Signal Strength and Amplitude vs Adjusted Time (Controls) ... 56 

Figure 4.12 Normalized Average Effectiveness of Each Method ..................................... 59 



www.manaraa.com

 

xii 

LIST OF ABBREVIATIONS 

AASHTO ................ American Association of State Highway and Transportation Officials 

AE ............................................................................................................ Acoustic Emission 

ASR ................................................................................................... Alkali-Silica Reaction 

ASTM .............................................................. American Society for Testing and Materials 

FFT ................................................................................................... Fast Fourier Transform 

FHWA .............................................................................. Federal Highway Administration 

ITZ .............................................................................................. Interfacial Transition Zone 

RCAC ......................................................................... Reactive Coarse Aggregate Concrete 

RFAC .............................................................................. Reactive Fine Aggregate Concrete 

UPV .............................................................................................. Ultrasonic Pulse Velocity



www.manaraa.com

  

1 

CHAPTER 1 

Abstract and General Introduction 
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1.1: Layout of Thesis 

 This thesis is to be composed of five chapters. The first chapter is a general 

introduction to the topics that will be discussed throughout the paper. These topics include 

acoustic emission, concrete, the alkali-silica reaction, different non-destructive test 

methods, and an abstract for the thesis. 

 Chapter two consists of a literature review on research regarding the major aspects 

of this thesis, which also includes acoustic emission and ASR, mainly. This literature 

review also covers vocabulary related to AE that is used as well as many ASTM standards 

that are pertinent to ASR. 

 Chapter three presents the experiment and how it was set up. This includes the 

creation of the samples, the test setup, and the materials used to analyze the data. 

 Chapter four is the analysis portion of the thesis. This chapter presents the test 

setup, information on how the test was performed and executed, and the results. The 

chapter also provides a discussion as to why the analysis and data looks the way it does. 

The results in this chapter are to be submitted to a major conference to be published 

independently.  

 Chapter five is the conclusion to this thesis that will summarize all the chapters that 

came before it. Recommendations for future work are also present in this chapter. 

1.2: General Introduction 

Concrete is used in a variety of different structures including nuclear power plants, 

bridges, dams, and residential and commercial buildings. As a widely used building 

material it is susceptible to many different conditions as well including rain, snow, heat, 

humidity, and radiation. Concrete is made up of mainly 4 separate components, and with 

the variances in uses and the environments in which it is placed in there is a multitude of 



www.manaraa.com

  

3 

ways concrete can deteriorate or fail. These include corrosion of the steel reinforcement, 

freeze-thaw cycling, scaling, loading and cracking, sulfate attacks, salt crystallization, 

microbiological attacks, erosion, delamination, and the alkali-silica reaction. These 

degradation processes affect the sustainability, serviceability, and safety of the many types 

of structures built with concrete (Clifton 1991). 

The alkali-silica reaction that occurs in concrete has been affecting concrete 

structures for nearly 8 decades. However, this problem has not typically been at the 

forefront of research until very recently. It became apparent at the Seabrook Nuclear Power 

Plant (NRC 2011) and academia has been researching why it is happening as well as ways 

to solve this problem. The degradation mechanism itself occurs at the chemical level during 

the creation of concrete but lasts and grows for the concrete’s lifetime. 

As this thesis is being written, the best way to avoid any problems relating to ASR 

is to utilize building materials that will not react. So, contractors and engineers should use 

aggregates that are less likely to have reactive silicas on their surface. However, this 

method is not as easy as it sounds. There are a few ASTM standards, including ASTM 

C1293 and ASTM C1260, that are widely used to screen aggregates for a potential ASR 

reaction. These methods are an improvement as compared to the previous ASTM C289 

and ASTM 295 standards at detecting aggregates with a high reactivity, but many times 

they have still shown false positives and false negatives on aggregates that should be 

rejected or accepted, respectively. Although testing methods are improving with time, there 

is still no widely accepted way of defending new structures from a lifetime of degradation 

through the alkali-silica reaction. 
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The reaction itself occurs during the creation of concrete, and the gel that is formed 

continuously expands during the entire life of the structure. This expansion is what causes 

the concrete to crack and deteriorate. There are a few different ways to monitor the 

degradation and how impactful the ASR has been to certain structures. These methods 

include petrography, visual inspections, and coring. Visual inspections are clearly limited 

to just the surface of structures, while coring and petrography are destructive methods. 

Acoustic emission is a nondestructive testing mechanism that has been shown to monitor 

the degradation of ASR affected concrete (Jones 2013; Ziehl 2008). Long term monitoring 

of concrete can be done to understand how ASR is affected by different aggregate types, 

how different conditions affect ASR, and how reinforcement affects ASR affected 

concrete. The objective of this research is to understand, through the investigation of non-

destructive methods, how concrete’s aggregate size, and reinforcement design, affects the 

damage mechanisms of ASR.  
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CHAPTER 2 

Literature Review 
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2.1: Alkali-Silica Reaction 

 Concrete, the world’s most widely used building material, typically consists of four 

main constituents: coarse aggregates, fine aggregates, water, and cement. This study 

focuses on the reaction that occurs between the alkalis (mainly NaOH and K2O) found in 

the cement solutions and the silica (SiO2) that is commonly found in aggregates. Water is 

the catalyst that excites the alkali-silica reaction to occur. Once the concrete’s ingredients 

are combined and water is added, the alkali compounds in the cement split into hydroxyl 

ions (OH-) (Lokajíček et al. 2017). These hydroxides then break the silica bond that is in 

the concrete and a gel like substance begins to form around the aggregates and on a 

microscopic scale. The reaction happens over time and effects are not always observed 

immediately. The gel is hydroscopic, so it will continue to expand over time in the presence 

of moisture or high relative humidity and temperature. The expansion of this gel around 

the aggregates is what leads to the microcracks, macrocracks, and visual deterioration 

common with ASR. See Figure 2.1 for an example of the phenomenon known as map 

cracking, which is a type of visual deterioration seen in ASR affected concrete. There is 

Figure 2.1: ASR affected dam in Norway (Thomas 2013) 
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currently no way to stop the reaction, but once it is detected it can be monitored (Liadut 

2018).  

 The alkali-silica reaction has long been a factor that has affected concrete structures 

over time. It was discovered in 1940 by Stanton (Stanton 1940). Since this time, it has been 

the subject of many research investigations. However, more recently the number of 

investigations has increased exponentially as compared to the 20th century. These 

investigations include determining the cause of the expansion in ASR concrete, 

understanding the way ASR propagates through concrete, and developing mitigation 

techniques. Petrography, coring, and visual inspections have typically been the major 

investigative methods used to research ASR. However, in the most recent decade 

researchers have also begun to use acoustic emission (AE) to investigate and understand 

the reaction. Two interesting conclusions made with AE are explained as follows: Farnam 

et al. (2015) discovered in AE hits with high frequencies (300kHz – 400 kHz) the 

microcracking begins in the interfacial transition zone, or ITZ, of the aggregate, while in 

AE hits with low frequencies (100kHz – 300 kHz) the microcracking begins in the ITZ and 

cement matrix. Abdelrahman et al. (2015) tested concrete prisms under accelerated ASR 

conditions and found that there was a correlation between the acoustic emission cumulative 

signal strength and expansion of the prisms. There will be a further discussion on acoustic 

emission later in this chapter. 

This thesis is focused on the relationship between reactivity, aggregate size, and 

degradation. The effect of aggregate size on the damage distribution of ASR affected 

concrete has also been investigated using other conventional methods such as mortar bar 

tests, chemical modelling, and mortar expansion (Payot 2007; Adil 2015; Saouma 2014). 
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Prior to research surrounding ASR and aggregate size, it was predicted that the ASR 

expansion would increase as particle size reduced (Stanton 1940; Vivian 1951). However, 

modern research has seemingly described that as reactive aggregate size decreases there is 

less of an impact on expansion and degradation as compared to larger reactive aggregates 

(Multon 2010). Dunant et al. (2012) concluded that in the primary stages of ASR 

deterioration the expansion’s rate depends on the individual aggregate sizes and later stage 

deterioration depended on the fracture behavior of the cement. Multon et al. (2008) 

investigated the effects of different aggregate size on mortar bars and concluded that 

reactive coarse aggregate led to expansion that was seven times larger than reactive fine 

aggregate expansion. Bazant et al. (1999) suggested that the size of the reactive aggregates 

has an impact on the swelling pressure of the gel formed during the alkali-silica reaction. 

While other researchers have proposed different hypotheses to describe the phenomenon 

observed in the studies, there is clear a link between aggregate size and reactivity. This 

thesis will provide further insight on this link and will attempt to fill in the gaps of the 

literature by using acoustic emission, and other non-destructive methods, to understand the 

differences and similarities of reactive coarse aggregate concrete and reactive fine 

aggregate concrete. 

The effect of reinforcement in a concrete structure is also of interest in this thesis 

and there is a gap in the literature when it comes to the boundary conditions of concrete 

and how it affects ASR with different aggregate size, using different non-destructive test 

methods. Although, the relationship between confinement and ASR has been looked in to. 

Liaudat et al. (2018) showed that directions with less compression from confinement tend 

to expand more. Studies at the University of Tennessee and the University of South 
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Carolina have concluded that the alkali-silica reaction in reinforced concrete leads to 

expansion along the thickness of the concrete (Soltangharaei 2020). Information 

surrounding this area of the reaction is relevant because many of the major structures 

affected by ASR are reinforced, these structures include nuclear power plants and bridges. 

As discussed above, AE is a top tier method for understanding the damage distribution in 

concrete, in general, thus making it an efficient method for the condition assessment of 

ASR effected concrete. The state-of-the-art method of analyzing how multiple non-

destructive test methods successfully investigate the relationship between ASR, aggregate 

size, and boundary conditions will surely further the body of knowledge on the alkali-silica 

reaction in concrete. 

2.1.1 Alkali-Silica Reaction Mechanisms 

 Although the alkali-silica reaction was discovered in the 1940s, there has only 

recently been an expansion in the research completed on the subject. The reaction takes a 

long time (up to multiple decades) to have a major impact on structures, which is the reason 

for research to only have recently focused on the reaction and its impact. Known structures 

that have been affected by ASR include the Millennium Stadium in Wales, the Seminoe 

Dam in Wyoming, The Fairfield Bridge in New Zealand, the Seabrook Nuclear Power 

Plant in New Hampshire, and many more. There are essentially two solutions to ASR 

infected concrete. The first is to repair the infected concrete at a high cost, which does not 

necessarily rid the structure of ASR related gel or cracks. The second option is to simply 

demolish the ASR infected structure, which also would lead to a high financial burden.  

Neither of these are a preferred solution for the future, so this thesis will contribute to the 

state-of-the-art research being completed to develop more beneficial solutions. A 
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discussion on current mitigation methods as well as the benefit of noticing ASR early are 

present later in this literature review chapter. 

Basic ingredients for the reaction are moisture (usually in the form of humidity), an 

alkalotic environment, and reactive silica on the aggregate. The basic solution to the ASR 

problem would be to utilize aggregate that has little-to-no-silica, but this process is not as 

easy as it sounds (Malvar et al. 2002). The reaction is an acid-base reaction, where the acid 

is the solid silica and the base is the sodium or potassium hydroxide found in the cement 

pore mixture. The reaction begins during mixing because of the presence of water. The 

reaction produces a gel like substance named calcium potassium (or sodium, depending on 

which alkali is present) silicate hydrate. The alkalis are not actually present during the 

reaction, it is their hydroxyl ion counterparts that lead to the reaction. In other words, there 

is silicon dioxide present on the aggregate. The water hydrates the alkali and separates 

them from their hydroxyl ions. The hydroxyl ions then break the siloxane (silicon dioxide’s 

bonds) bonds, and this is what forms the alkali-silica gel. The gel expands as it is exposed 

to more moisture and this is what causes the deterioration and expansion in concrete  

{𝑆𝑖 − 𝑂 − 𝑆𝑖} + {𝑅! + 𝑂𝐻"} → {𝑆𝑖 − 𝑂 − 𝑅} + {𝐻 − 𝑂 − 𝑆𝑖}   (2. 1) 

{𝐻 − 𝑂 − 𝑆𝑖} + {𝑅! + 𝑂𝐻"} → {𝑆𝑖 − 𝑂 − 𝑅} + {𝐻#𝑂}      (2. 2) 

{𝑆𝑖 − 𝑂 − 𝑅} + {𝑛𝐻#𝑂} → {𝑆𝑖 − 𝑂"} + {(𝐻#𝑂)$} + {𝑅"}         (2. 3) 

structures. It is important to note that this research takes place over time and it also 

produces silicic acid (Saouma et al. 2014). See Equations 2.1 – 2.3 below for a basic 

depiction. 

When the expansion of the gel inside the concrete is not uniform, microcracking 

begins to occur. The microcracking itself is influenced by the concrete mixture and 

restraints and the effects can be seen on the surface of the concrete in the form of 
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macrocracks. Overall the major effects of ASR on concrete include microcracks, 

macrocracks, expansion, induced compressive and tensile stresses, and induced bond 

stresses between the steel and concrete. A microscopic photo of ASR cracking can be seen 

below in Figure 2.2. Typically, in ASR affected concrete it is common to see the 

phenomenon known as map cracking. ASR is also incredibly dangerous for structures 

because it expands slowly and at a rate to which the human eye would not notice. So, as 

the gel around the aggregates expands and microcracks form, the concrete itself also 

expands. Even though visual cracks may not be forming, the safety and serviceability of 

the structure affected by ASR also begins to become compromised. 

2.1.2 ASR Laboratory Testing Procedures 

 Listed below are the ASTM standards for testing methods to determine the 

reactivity of aggregates and the comments about them taken directly from the AAR Fact 

Book (FHWA): 

2.1.2.1 ASTM C295: “Guide for Petrographic Examination of Aggregates for Concrete”:  

Figure 2.2: ASR Cracking scanned by electron micrograph (Jozwiak-
niedzwiedzka 2018) 
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• Useful evaluation to identify many (but not all) potentially reactive components in 

aggregates. 

• Reliability of examination depends on experience and skill of individual 

petrographer. 

• Results should not be used exclusively to accept or reject aggregate source – 

findings best used in conjunction with other laboratory tests (e.g., AASHTO T 303 

and/or ASTM C 1293). 

2.1.2.2 ASTM C 289: Standard Test Method for Potential Alkali-Silica Reactivity of 

Aggregates (Chemical Method) 

• Aggregate test in which crushed aggregate is immersed in 1M NaOH solution for 

24 hours – solution is then analyzed for amount of dissolved silica and alkalinity. 

• Poor reliability.  

• Test is overly severe, leading aggregates with good field performance to fail the 

test.  

• Some reactive phases may be lost during pretest processing. 

2.1.2.3 ASTM C 227: Standard Test Method for Potential Alkali Reactivity of Cement-

Aggregate Combinations (Mortar-Bar Method) 

• Mortar bar test (aggregate/cement = 2.25), intended to study cement-aggregate 

combinations. 

• Specimens stored in high-humidity containers at 38°C. 

• Several reported problems with test, including excessive leaching of alkalis from 

specimens. 
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2.1.3: ASR Mitigation 

 As discussed above, it is evident there are four main components that lead to the 

alkali-silica reaction. The components are reactive silicas found in aggregates, alkalis 

(mainly the hydroxides attached to the alkalis) commonly found in cement, soluble Ca, and 

a humid environment or any environment that provides moisture to allow for expansion of 

the silicate gel (Rajabipour 2015). Rajibipour et al. (2015) elaborates on most of the known 

mitigation efforts in use and the pros and cons with each of them. 

There are more options for new construction to prevent, or mitigate, the reaction 

from occurring as compared to mitigating existing structures that are experiencing ASR 

related damage. These options begin with what seems to be the simplest choice, which is 

to simply only use aggregates with a very small likelihood of being reactive. However, as 

already discussed in this chapter, there is a lot of uncertainty surrounding selecting 

aggregates with low reactivities. Additionally, there is not a large supply of aggregates with 

low levels of reactivity. Another mitigation strategy for new construction is to follow 

AASHTO-PP65 and limit the alkali content in the concrete solution. The standard calls for 

a maximum alkali content of 1.8	𝑘𝑔/𝑚% (AASHTO-PP65 2013). There are standards 

available to reduce the amount of reactions occurring in new concrete, however, the 

standards have not always been reliable. An additional mitigation strategy is to avoid using 

cement in the concrete mixes. This easily reduces the amount of alkalis that will be present 

in the pore solution, but this will yield in concrete that does not have equivalent properties 

to Portland cement concrete. These properties include freeze-thaw scaling, strength 

development, and setting. Although this is currently the most common way to avoid ASR 

for new construction, there is a limited availability of supplementary cementitious material 

(Rajabipour 2015). Lastly, new construction can opt to add certain admixtures to concrete 
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in order to add compounds or chemicals that reduce the effectiveness of the reaction. 

Lithium has been shown to have this effect (Kawamura 2003; Mo 2005). Although, the 

chemical is not widely available, additives like this chemical would be great for the future 

of mitigation of ASR. 

As discussed previously, there are fewer options for engineers when it comes to 

existing construction as opposed to new construction. ASR propagates from the inside of 

concrete towards the outside, which is why there is difficulty mitigating it in existing 

structures. Accessing the source of the reaction becomes increasingly more difficult in 

structures as the thickness of the structures increase; this is especially a problem in 

structures with a very large concrete thickness, like nuclear power plants. Aside from this 

problem, the surfaces of the affected concrete can still be accessed and there are a few 

mitigation methods widely used to repair structures. Treatment of the surfaces with Lithium 

via electromagnetic or vacuum impregnation, or topical application, have had success in 

treating surface ASR (Rajibpour 2015). Other mitigation methods include crack filling, 

encasing the structure with new concrete, and slot cutting. However, these methods are like 

putting a band-aid on an abrasion that needs stiches, because they are simply solving 

immediate symptoms, not the overarching problem of ASR (Rajibpour 2015). Although, 

the mitigation method that has seen the most effective results is to reduce the exposure to 

moisture by improved drainage or sealants (Fournier 2015).  

The methods discussed in this section are most effective when ASR is detected 

early. Take two identical water treatment structures that are affected by ASR, the first 

structure’s, structure A, ASR problem is detected early, while structure B’s ASR problem 

is only noticed by the time visual map cracking begins to appear. Structure A is likely to 
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have a much longer serviceability lifetime because solutions like improved drainage can 

be implemented in areas where high moisture exists. In addition, monitoring early stage 

ASR will lead to a better understanding of how reliable and serviceable any affected 

structure is at any given time. Noticing expansions and crack growth can save lives, so it 

is always best to detect ASR as soon as possible. The FHWA conducted a few field tests 

and one of their major takeaways when dealing with ASR was to “start monitoring as soon 

as possible.” The data accrued from field monitoring will also eventually assist in finding 

a long-term solution to the problem. (Thomas 2013) 

2.2: Acoustic Emission 

 In the fields of civil and structural engineering, Acoustic Emission (AE) has 

recently been a useful technique to assess the condition of concrete structures.  The 

anomaly known as AE is the release of acoustic, or elastic, waves inside mediums, such as 

concrete. The waves are formed by the release of energy, and in concrete structures this 

energy release usually results from crack formations or crack growth (ASTM E1316). The 

waves travel through the concrete towards the surface, which is where the AE sensors are 

typically placed. Although, some literature has used AE sensors embedded inside concrete 

Figure 2.3: Acoustic Emission Setup (Modeled after Soltangharaei 2018) 
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(Soltangharaei 2018). AE is a form of non-destructive testing and this is because the 

sensors simply monitor the damage being experienced; they do not require material damage 

in order to begin a test. Other common ways to test concrete, like petrography and coring, 

are destructive test methods because the methods require the material/concrete to be 

destructed. So, in many applications where structures cannot be disturbed, such as nuclear 

facilities and prestressed concrete applications, AE is an efficient data acquisition 

replacement to common methods. Commonly, piezoelectric sensors (made from lead 

zirconate titanate, or PZT, ceramic) are used to acquire AE data. The sensors can detect 

very small releases of energy inside concrete, which makes AE such a useful technique. 

AE does require a large amount of data filtration because the sensors are so sensitive 

(within the ultrasonic frequency range) and can detect very small disturbances, however. 

The methods used in this study for data filtration are further addressed in Chapter 3. The 

sensors convert the energy release into electric signals for analysis. See Figure 2.3 for a 

depiction on how AE sensors are typically laid out on a concrete specimen during a three-

point bending test. AE allows for real-time data to be collected at a range of different time 

scales; it is suitable for long-term and short-term acquisition. AE also allows for data to be 

collected without excitations or loads being applied to a specimen. The passive ability of 

this type of testing makes it such a great choice when analyzing the effects of ASR. 

 There are two main types of piezoelectric sensors that are used in research: 

broadband, or wideband, sensors and resonant sensors. There are pros and cons to each 

type. Resonant sensors are much more sensitive than broadband sensors but are only this 

sensitive at its resonant frequency. The broadband sensors can sense a range of different 

frequencies, but the sensitivity is not as high as compared to the resonant sensors. 
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Broadband sensors are of better use when the frequency being analyzed is unknown, 

whereas resonant sensors are better when there are more features that are of interest, 

including amplitude and energy. When deciding on a resonant sensor it is imperative to 

select the correct frequency range. Although, there are positives to using one sensor over 

the other, it is not uncommon for researchers to use both types when conducting 

experiments.  

 Typically, in the past, AE has been utilized for data acquisition in concrete load 

testing as well as the monitoring of concrete embedded with corrosive steel (Abdelrahman 

2015; Ono 2011; El Batanouny 2014; Ziehl 2016).  Other popular uses of AE monitoring 

in the fields of civil and structural engineering include bridge and beam assessment (Yu 

2011; Anay 2016), and in concrete structures affected by the alkali-silica reaction 

(Abdelrahman et al. 2015). Additionally, many methods such as coring, mechanical strain 

gauges, crack indexing, visual inspection, petrographic analysis, and more have been used 

to assess the damage distribution of ASR concrete (Thomas et al. 2013). The methods 

mentioned are adequate but have their deficiencies in comparison to AE. For example, AE 

detection methods allows for microcracks to be found, while visual inspection of concrete 

can only be used when cracks form on the surface of concrete. Therefore, AE is more 

satisfactory in detecting early signs of ASR. Early crack detection is of greatest importance 

in concrete applications where there is a thick layer of concrete, such as nuclear 

containment facilities or dams, in question. AE is also a better option than many other 

common testing methods because it is less time consuming and less dependent on the 

individual conducting tests. Visual inspection can be a subjective method at times, but even 

with the advancement in drone inspection technology AE remains superior. Strain gauges 
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are suitable for piles, beams, and columns, but are not as useful when studying shear walls. 

This is because shear expansion can happen through the thickness of the wall as compared 

to the surface of the wall, which is where a strain gauge would be placed. Crack indexing 

is a localized monitoring technique and is not determinant of an entire structure. Indexing 

also takes a while to complete compared to the time that it takes to set up the AE system. 

Coring is a method that cannot be used in certain applications because it is a destructive 

method that requires multiple samples, and even with the multiple samples it is still not 

simple to determine the condition of a full structure from the few samples taken. 

The civil engineering research industry has made many strides in classifying, 

modelling, and understanding the deleterious reaction that is the alkali-silica reaction, over 

the last decade. Firstly, important components in the reaction are the aggregates 

composition and mineralogy. Rajabipour et. al (2015) noted that certain natural silicates 

are more susceptible to ASR; these silicates include opal, cristobalite, and trydimite. 

Another important mechanic in the reaction is the aggregate size, which has been addressed 

in this literature review. 

2.2.1 Acoustic Emission Terms/Parameters 

 The waves generated during acoustic emission testing have many properties that 

can be analyzed. ASTM E1316 “Standard Terminology for Nondestructive Examinations” 

defines many of these terms related to acoustic emission during data acquisition for 

damage, and the definitions for the most relevant ones to this study, as well as parameters 

that can be calculated and analyzed, are listed below: 

• Acoustic Emission: “The class of phenomena whereby transient elastic waves are 

generated by the rapid release of energy from localized sources within a material, 

or the transient waves so generated” (ASTM E1316). 
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• Amplitude: “The peak voltage of the largest excursion attained by the signal 

waveform from an emission event” (ASTM E1316). See Figure 2.5 for a depiction. 

• Duration: “the time between AE signal start and AE signal end” (ASTM E1316). 

See Figure 2 for a depiction. 

• Energy: “the energy contained in a detected acoustic emission burst signal, with 

units usually reported in joules and values which can be expressed in logarithmic 

form (dB, decibels)” (ASTM E1316). 

• Event: “a local material change giving rise to acoustic emission” (ASTM E1316). 

• Hit: “the detection and measurement of an AE signal on a channel” (ASTM 

E1316). 

• Rise Time: “the time between AE signal start and the peak amplitude of that AE 

signal.” (ASTM E1316). See Figure 2.3 for a depiction. 

Figure 2.4: Acoustic Emission Waveform (Modeled after Soltangharaei 2018) 
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• Count: “the number of times the acoustic emission signal exceeds a preset 

threshold during any selected portion of a test” (ASTM E1316). 

• Signal Strength: As defined by the Physical Acoustic Corporation, or PAC, 

“signal strength is defined as the integral of the rectified voltage signal over the 

duration of the AE waveform packet. It is sometimes referred to as relative energy 

which relates to the energy amount released by the material or structure” (Nor et al. 

2011). In this study it will typically be measured in picovolts (pVs). 

• Threshold: “a voltage level on an electronic comparator such that signals with 

amplitudes larger than this level will be recognized. The voltage threshold may be 

user adjustable, fixed, or automatic floating. (E 750)” (ASTM E1316). 

• Hit Definition Time (HDT): “This parameter specifies the maximum time 

between threshold crossing, i.e. if no crossing occurs during this time then the hit 

has ended. If the HDT is set too high then the system may consider two or more 

hits as one. If the HDT is set too low then the system may not fully capture the AE 

hit and possibly treat one hit as multiple ones” (Rúnar 2013). 

• Historic Index: The historic index is a metric that measures the change in 

cumulative signal strength (CSS) over a given duration for a test, or the slope of the 

CSS vs time graph. 

• Hit Lockout Time (HLT): “This parameter specifies time which must pass after 

an hit has been detected before a new hit can be detected. If the HLT is set too high 

then the system may not capture the next AE and if it is set too low then the system 

may capture reflections and late arriving component of the AE as hits” (Rúnar 

2013). 
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• Severity: The severity of any given amount of data can be determined with an 

intensity analysis after gathering an understanding of the historic index. It is  

essentially the average signal strength of a given data set having the maximum 

signal strength value (Jones 2012). 

• Peak Definition Time: “parameter specifies the time allowed, after a hit has been 

detected, to determine the peak value. If the PDT is set too high then false 

measurements of peak value are more likely to occur. It is recommended that the 

PDT should be set as low as possible” (Rúnar 2013).  

2.2.2: AE Filtering/Analysis Methods 

 As seen above, there is a multitude of information that comes along with acoustic 

emission data acquisition. Researchers must know what to look for and sort out noise from 

meaningful data. Literature related to acoustic emission presents a few ways to filter data 

as well as analyze data. A common method used in data filtering is known as duration-

amplitude filtering and it stems from the consensus that acoustic emission hits with a low 

amplitude and a high-rise time are typically noise hits and not meaningful (Tinkey 2002). 

These are also known as Swansong II filters. Acoustic emission tests with a relation to 

concrete are apparent in the literature using this filtering method, as well as methods like 

the R-A filtering method that is very similar (Anay 2016). The specific filtering methods 

used in this thesis are addressed in Chapter 3.  

 Subsequently, after filtering the data it should be ready for analysis. The parameters 

that are acquired from acoustic emission data acquisition can lead to very effective 

analysis. The primary AE parameters used in this study are signal strength and cumulative 

signal strength (CSS). Signal strength’s definition can be seen in the section above, and the 

cumulative signal strength is the summation of signal strengths over a certain time period. 
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In analysis, it is typical to plot CSS versus time. These plots will lead to an efficient 

explanation of when damage occurred inside the specimen in question over that time 

period. Higher rates of increased CSS are strong indicators of damage, microcracking, 

and/or expansion. The effectiveness of this metric has been evaluated in many research 

investigations including composite (Kumar 2017), concrete testing (Elbatanouny 2014 & 

Elbatanouny 2019), and even in the analysis of ASR affected concrete (Soltangharaei 

2020). The rate at which the CSS changes over time is closely linked to the next parameter 

discussed in this thesis: historic index. 

 The historic index is also defined above in the parameter section. This parameter 

can play a very pivotal role in acoustic emission data analysis, as it uniquely describes 

major changes in the CSS. It also can assist in determining an intensity analysis, which will 

be discussed later in this section. The equation to find historic index is expressed in 

Equation 2.4. 

𝐻(𝑡) = ∑ '!"
#
"$%&' /(*"+)
∑ '!"#
"$" /*

    (2. 4) 

𝑤𝑖𝑡ℎ	𝐾 = 8
0															𝑁 < 200

0.8𝑁				200 ≤ 𝑁 ≤ 1000
𝑁 − 200								𝑁 ≥ 2000

 

 In Equation 2.4 N is the number of hits up to time t; 𝑆-.= signal strength of the ith 

hit; and K = empirically derived factor that varies with the number of hits and material type 

(Benedetti 2014). This parameter is incredibly effective because there is no limitation based 

on specimen size and the historic index can detect damage onset in a variety of conditions. 

The historic index can also be plotted with the severity index to form an intensity plot. The 
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severity index is also defined in the parameters above and can be calculated with Equation 

2.5. 

𝑆/ =
0
1
(∑ 𝑆-2

1
340        (2. 5) 

 In Equation 2.5, 𝑆/ represents severity, J represents empirically derived constants 

based on certain mediums or materials, and 𝑆-2 represents the signal strength of the mth 

hit (Shahidan 2013). A plot of the historic index maximum and severity index represents 

the intensity of the data being analyzed. The chart can be separated into sections where the 

top right most points represent the most intense information, while the bottom left 

represents the least intense information. In the context of this thesis, a point in the lower 

left would represent ASR being less active in a certain specimen; the opposite would be 

true for a point in the upper right of the chart.  

2.2.3: Challenges with Acoustic Emission 

 Although the use of acoustic emission for non-destructive monitoring has 

experienced an exponential increase in activity over the last decade, there are still many 

challenges that present themselves while dealing with acoustic emission data. Primarily, 

there are a multitude of piezoelectric sensors that data collectors can choose from, and each 

type of sensor has their own pros and cons. For example, wideband sensors will collect less 

data at a larger range than broadband sensors. However, broadband sensors will collect 

more data in a more centralized area as opposed to broadband sensors. This becomes 

challenging in research because each senor location is unique and may not encounter the 

same amount of damage as another location. It is important when using acoustic emission 

sensors to use a variety of sensor types when testing in order to account for all the variations 

of damage than could occur throughout a specimen. Additionally, not all research projects 

are funded equally, and these sensors can range from a few hundred dollars to thousands 
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of dollars. Ideally, researchers would use the most sensitive and most resistant to noise, but 

there are other ways to avoid these challenges other than a higher budget. 

 Noise is a recurring problem that researchers using acoustic emission often must 

face. In this thesis, noise is data encountered that does not have a meaningful impact. Noise 

can be encountered in many ways, including subtle vibrations via walking, a door opening 

and closing, water dripping and making a sound, or even noise that cannot be detected by 

human’s ears. It is evident from the literature that different types of damage release damage 

in different ways. This can be seen from simple acoustic emission features like frequency, 

or more detailed characteristics like FFT’s of each hit. For example, Farnam et al. (also 

discussed earlier in this chapter) explained that different types of microcracking occur at 

different frequencies (Farnam 2015). Additionally, Zhang et al. explained that when 

monitoring energy and frequency for rock rupturing, a high frequency but low energy 

signal is apparent in small-scale cracking, but the opposite is true regarding large-scale 

cracking (Zhang 2018). Clearly, it is important to monitor these parameters for ASR 

testing. However, the existence of noise can hinder results like the ones discussed above. 

So, in this thesis the author used a method of creating an amplitude floor during data 

collection to reduce the noise signals. The author also used a filtering system once all the 

data was collected to ensure that all data being analyzed had meaning. Chapter 3: 

Experimental Setup will discuss these two methods in more detail. 

2.3: Additional Analysis Methods 

 The results presented in this thesis use AE and other non-destructive methods to 

analyze the ASR data presented. The primary purpose of this thesis is to investigate 

different evaluation methods and understand the correlation between aggregate size, 

boundary condition, and ASR activity. An additional parameter that is used to understand 
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ASR in concrete related structures is strain. Expansion is present in any concrete structure 

affected by ASR and it is one of the most critical products of the reaction. However, it also 

is one of the most helpful parameters that a researcher can observe. Expansion is a critical 

component of ASR, and a lot of literature surrounding ASR involves monitoring strain and 

expansion, see Soltangharaei et al. (2018), Morenon et al. (2017), Jones et al. (2013), and 

many more.  

 In addition to expansion and acoustic emission, this thesis also presents progressive 

pictures and measurements of crack growth. Understanding how large cracks are becoming 

as well as the rate at which the cracks grow can yield meaningful results when it comes to 

concrete structures. Crack patterns, growth rates, microcrack formations, and different 

types of cracking under varied loading tell engineers important information about 

structures. Concrete’s brittle nature also increases the importance of monitoring cracks as 

soon as possible. Hillerborg et al. (2013) elaborates on the importance of monitoring cracks 

and how monitoring cracks helped him discover the relationship between bending strength 

and tensile strength. Monitoring cracks related to concrete is important; however, there is 

not much research that expand on the formation and growth of cracks when it comes to 

ASR. It is widely known that ASR leads to map cracking, expansion, and the degrading of 

structures; therefore, there may be a correlation between crack growth and ASR. Teramoto 

et al. (2018) used a digital image technique to monitor the formation and growth of 

microcracks related to ASR, and he concluded that mechanical properties of aggregates 

used in the formation of concrete directly affect the crack growth of ASR cracks.  

 Crack formation and growth affects the function of concrete as well as the interior 

make-up. A typical way to measure how the inside of any material has been affected by 
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cracking, or any other type of degradation, is by an ultrasonic pulse velocity test, or UPV. 

A UPV test is non-destructive and is an attractive method for monitoring a variety of tests 

on concrete. A UPV test sends waves through one side of the concrete to the other and it 

can measure how fast the waves travel, how far the waves had to travel, and many different 

parameters. Hobbs et al. (2007) noted that UPV was helpful in determining the strength 

differences in varied types of concrete. Measuring how fast waves travel through concrete 

is important because if UPV tests are done throughout the life of concrete the waves are 

slowly going to travel the same distance at a slower pace because there is more interior 

degradation preventing the waves from travelling as fast as they would inside pristine 

concrete. This is certainly of interest in ASR related damage because understanding how 

different aggregates and boundary conditions effect concrete from the inside would provide 

more insight towards a correlation between aggregate size, boundary conditions, and 

damage. 

 Each evaluation method described above has its pros and cons. For example, 

acoustic emission is incredibly sensitive and can detect small cracks, but a lot of noise can 

come from it. Crack growth measurements are only possible once cracks have begun to 

show, so it is difficult to analyze early in the ASR process. UPV waves travel at a low 

frequency (as compared to AE waves), so it is likely that microcracks can be missed. This 

thesis focuses on mitigating the problems encountered by these testing methods and 

investigating them to determine the effectiveness of each when analyzing ASR affected 

concrete. 
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CHAPTER 3 

 Experimental Setup  
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3: Experimental Setup Introduction 

 The setup for this whole study consists of two separate tests that were run one after 

the other. The major difference between the tests is in the concrete’s composition, while 

the testing procedure and setup remained the same throughout both tests. This chapter is 

broken up into two sperate subchapters. The first will explain the preparation of the 

specimens, while the second will explain the test’s setup and instrumentation. 

3.1: Specimen Preparation 

 Each test setup consisted of three concrete specimens, of which two were composed 

of the reactive coarse, or fine, aggregate and the third was a control specimen. The coarse 

specimens were procured at the University of Alabama and moved to the University of 

South Carolina to be placed in the high humidity/temperature chamber. The reactive fine 

aggregate specimens were procured at the University of Nebraska. The dimensions were 

12 in x 12in x 44 in. One reactive specimen was fitted with rebar along the X and Z axes, 

this specimen is denoted as the “confined” specimen, while the reactive specimen without 

reinforcement is denoted as the “unconfined” specimen. The figures and tables displayed 

in this chapter are taken from the NEUP Project 16-10214 proposal because the author did 

not have access to the specimens prior to their creation.  

There were four aggregates used in the creation of the concrete specimens. Table 

3.1 shows the location from where each aggregate came from, the specific gravity (SSD), 

the absorption percentage, and DRUW of each aggregate. Figure 3.1 is a gradation plot 

for each aggregate as well. 
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Table 3.1: Aggregate Information (Malone 2019) 

 Location Specific 
Gravity (SSD) 

Absorption DRUW (lb/ft3) 

Non-Reactive 
Coarse 

Omaha, NE 2.617 2.57% 103.97 

Non-Reactive 
Fine 

Omaha, NE 2.651 0.42% - 

Reactive 
Coarse 

Gold Hill, NC 2.722 0.039% 92.42 

Reactive Fine Robstown, TX 2.658 0.70% - 
 

Figure 3.1: Gradation of Aggregates (Malone 2019) 

 The cement used in the concrete was ASTM C150 (2018) Type I/II Portland 

Cement. See Table 3.2 for a chemical composition of the cement. In order to impact the 

flowability of the concrete a polycarbonate based HRWR was used as an admixture at 3-

12 fl oz/cwt. 
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Table 3.2: Cement Information (Malone 2019) 

Chemical 
Properties 

Oxide 
(%) 

SiO2 20.4 
Al2O3 4.1 
Fe2O3 3.1 
CaO 63.8 
MgO 2.3 
SO3 2.7 

Na2Ocq 0.47 
Loss on Ignition 2.5 

Physical 
Properties 

Blaine Fineness 
(m2/kg) 

443 

Specific Gravity 3.15 
 

  

 

 

 

 

 

The concrete was cast inside a wooden framework that satisfied the dimensions and 

ensured a smooth exterior. The confined specimens were reinforced with grade 60 headed 

rebar. The longitudinal directions were fitted with four 40-inch-long #7 bars, and the  

Figure 3.2: 2D Reinforcement Plan (Malone 2019) 

Figure 3.3: Rebar Placement Prior to Casting (Malone 2019) 
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 Figure 3.4: 2-D Reinforcement of Specimens (Malone 2019) 

vertical directions were fit with twelve 9-inch-long #6 bars. Cable ties were used to connect 

the rebar, and Figure 3.2 – Figure 3.4 describe the reinforcement plan. 

 The mix design for the concretes can be seen in Table 3.3. The control mixes used 

innocuous aggregate and low-alkali cement. The reactive mixes consisted of innocuous and 

reactive aggregates depending on the specimen being procured. In the reactive specimens, 

an alkali booster was used to accelerate the reaction. 

Component Control Reactive Coarse 
Aggregate 

Reactive Fine 
Aggregate 

Weight (lb/yd3) Weight (lb/yd3) Weight (lb/yd3) 
Cement 590 590 590 
Water 295 295 295 

Coarse Aggregate 1900 1751 1846 
Fine Aggregate 1195 1415 1252 

HRWR 4.0 oz/cwt 4.0 oz/cwt 4.0 oz/cwt 
50/50 NaOH, lb 0 15.69 15.69 

w/c 0.5 0.5 0.5 

Table 3.3: Theoretical Mix Design (SSD) (Malone 2019) 
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3.2: Test Setup and Instrumentation: 

After the specimens were received by the University of South Carolina, sensors 

were attached to each specimen prior to being placed in the chamber. Ten sensors were 

epoxied onto the surface of each reactive specimens, and four sensors were placed on the 

surface of the control specimens. The sensor locations are tabled in Table 3.4 and depicted 

in Figure 3.5. All sensors used were PKWDi with 26-dB preamplification. The testing 

chamber is in the structures/geotechnical laboratory at the University of South Carolina. It 

is an 8’ x 8’ x 4’ container made from plexiglass.  

                      Table 3.4: Sensor Locations 

 Reactive Specimens Control Specimens 
Sensor No. X (in) Y (in) Z (in) X (in) Y (in) Z (in) 

1 110 90 0 110 120 90 
2 330 30 0 330 120 30 
3 110 30 120 110 0 30 
4 330 90 120 330 0 90 
5 110 120 90 - - - 
6 190 120 30 - - - 
7 330 120 30 - - - 
8 110 0 30 - - - 
9 250 0 90 - - - 
10 330 0 90 - - - 

To reduce error within the chamber the sensor-to-cable connection was moisture 

protected with heat shrink tubing. During testing hours, the chamber remained at 95% ± 

5% relative humidity and at 37 ± 3 degrees Celsius. A humidifier and a heater keep the 

chamber at these levels, and the humidifier distributed moisture evenly throughout the 

chamber. Chamber maintenance as well as strain measurements and data acquisition were 

the only reasons testing and data collection were halted. Chamber maintenance included 

simple cleaning, monitoring the temperature and humidity, and pencil lead breaks to ensure 

the data acquisition system was working properly. To ease access in and out of the chamber 
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the specimens were fitted onto rolling steel carriers and the bottoms of the specimens were 

protected by neoprene pads to reduce noise from the ground and potential vibrations.  

Each month strain measurements were taken using DEMEC gauges (demountable 

mechanical strain gauges) with lengths of 20 in. in the X-direction and 6 in. in the Y and Z 

direction. In addition to strain measurements, each month (once cracks appeared) a Dino-

Lite digital microscope was used for crack measurement and to take microscopic images 

ranging from 210 to 220 times resolution. The inspection procedure included precise visual 

inspection for minor surface cracks. The data acquisition machine used was a 24 channel 

(10 confined, 10 unconfined, and 4 control) Micro-II Express, manufactured by MISTRAS 

Group, Inc. (Princeton Junction, NJ, USA). The sampling rate of this machine is 5 million 

samples per second, and the settings used can be seen in Table 3.5. 

12” 

12
” 

44” 

Sensor 3 Sensor 4 

Y 

Z 

X 

12” 

12
” 

44” 

Sensor 1 
Sensor 2 

Sensor 8 
Sensor 9 Sensor 10 

Y 

Z 

X 

a) Control Specimen 

b) Reactive Specimen 

Figure 3.5: Sensor Locations Depicted (Not to Scale) 
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     Table 3.5: Data Acquisition Setting 

Setting Value 

Sampling Rate 5000 kHz 
Threshold 32 dB 
Pre-trigger Time 256 µs 
Hit Definition Time 400 µs 
Peak Definition Time 200 µs 
Hit Lockout Time 200 µs 
Low-Pass Digital Filter 400 kHz 
High-Pass Digital Filter 20 kHz 

Data was collected for 300 days and analyzed using the AEWIN software. As 

discussed in the literature review chapter, acoustic emission can yield a lot of noise, or 

meaningless data. A filtering method was used in which the data points were only accepted 

if a single event was detected by a certain number of sensors. This number was at least four 

sensors for reactive specimen hits and 2, or 3, sensors for control specimen hits. The data 

was filtered using MATLAB and analyzed further using Microsoft Excel. Excel was also 

used in analyzing the UPV, crack growth, and strain data gathered during different times 

throughout the test. Figure 3.6 shows the control specimen located in the chamber prior to 

testing.  
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Figure 3.6: Control Specimen inside Chamber 
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CHAPTER 4 

Results and Discussions 
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4.1: Introduction 

 The major discussions and comparisons presented in this chapter include a strain 

comparison, general acoustic emission parameters, a UPV comparison, and finally a 

comparison on crack growth. The coarse concrete data, as described in Chapter 3 comes 

from a accepted paper by the author’s colleague titled “Temporal Evaluation of ASR 

Cracking in Concrete Specimens Using Acoustic Emission” (Soltangharaei 2020). The 

author was given the results of this test to compare to the results of the subsequent fine 

concrete results. The findings and discussion are presented in this analysis chapter of the 

thesis.  

Another objective of this thesis is to investigate different evaluation methods for 

understanding ASR degradation. This can be analyzed by comparing the reactive specimen 

data at the final step of each test with the control data at the same points. Contrasting these 

data sets can show the effectiveness of each evaluation method because the control 

specimens can represent concrete structures at the beginning of their use. Differences 

between the control and reactive specimens outline the usefulness that each method brings 

to the table and show how effective each method was at collecting data for early stages of 

ASR. So, at the end of each subsection in this chapter, a section contrasting the control 

results to the reactive results to outline the effectiveness of each measurement used is 

discussed. 

In total there are 6 concrete specimens that will be addressed in this chapter. This 

includes a confined coarse, unconfined coarse, coarse control, confined fine, unconfined 

fine, and fine control. Note that throughout this thesis the data presented in red represents 

the confined reactive coarse aggregate specimen, the data presented in blue represents the 

unconfined reactive coarse aggregate, the data presented in green represents the confined 
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reactive fine aggregate, and the data presented in pink represents the unconfined fine 

reactive aggregate.  

 The three coarse specimens were kept in the humidity chamber together, 

subsequently, the three fine specimens were also kept in the humidity chamber together. 

The coarse specimens were monitored for nearly two years and the fine specimens were 

monitored for nearly 8 months after the coarse specimens were taken out of the chamber. 

In order to conclude on information about these specimens it is important to mention that 

the data that will relate the two types of concrete is not based on how long the specimens 

were in the chamber but is based on similar strain expansions. See Figure 4.1 for the visual 

strain comparison, which is discussed in the following section of this chapter.  
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Figure 4.1: Strain through 250 Days

a) Coarse Concrete Volumetric Strain b) Coarse Concrete Directional  Strain a) Coarse Concrete Volumetric Strain 

c) Fine Concrete Volumetric  Strain d) Fine Concrete Directional  Strain 

Figure 4.1: Strain through 250 Days 
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4.2: Strain 

 Generally, in both completed tests, the reactive specimens expanded while the 

control specimen did not experience the same expansion. This expansion is apparent in 

concrete structures that are affected by the ASR reaction, so the control specimen’s 

expansion should be low in comparison to the reactive specimens. The control specimen 

for the reactive coarse aggregate concrete experienced some shrinkage. The control 

specimen in the reactive fine aggregate concrete test did show some initial expansion, but 

the expansion did not continue the active days continued. The expansion over the duration 

of the entire test is nearly zero, so the results are still meaningful and provide evidence to 

support this thesis. The directions shown in the figures are explained as follows: The X 

direction is the length of the concrete, the Y direction is the width of the concrete, and the 

Z direction is the depth of the concrete. See Figure 3.1 in the previous chapter for a 

depiction of the directions. 

4.2.1: Reactive Fine Specimens 

 The average strains in all directions of the reactive fine concrete specimens increase 

at relatively close rates, and the confined Y and Z directions, as well as the unconfined Z 

direction, lead the way. The Z direction is the direction that is parallel to the casting 

direction, and Smaoui et al. (2014) noted that this direction is prone to a lower tensile 

strength. The unconfined specimen’s largest directional strain is in the Z, but the confined 

specimen’s largest is the Y direction. Clearly, confinement plays an important roll in 

directional expansion. The confined specimen also has higher strains in general, which also 

is what leads to its larger volumetric strain. The confined specimen’s Z and Y directional 

expansions are very similar. Like above, the large Z direction expansion can be attributed 

to the casting direction. In comparison to the confined specimen’s X direction, the Y 
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expansion is larger than the difference in the unconfined specimen. This can be attributed 

to the data acquisition method and the strain gauges used. Since the depth (Z) direction of 

the concrete is reinforced with steel it is likely that there was a redistribution in the ASR 

stresses that led to this increase in the width. 

The unconfined fine specimen seems to expand in an isotropic manner, and the 

confined fine specimen expands in a slightly more anisotropic manner than the unconfined 

because of the X direction’s smaller strain.  

4.2.2: Reactive Coarse Specimens: 

As described in Chapter 3, the reactive coarse aggregate specimen’s data are the 

results of testing completed prior to the author’s research. In addition to this chapter, the 

results can also be seen in the author’s colleague’s, Vafa Soltangharaei, dissertation (2020) 

called “Evaluation of Temporal Damage Progression in Concrete Structures Affected by 

ASR Using Data-driven Methods.” In order to provide a relevant comparison between the 

fine and coarse specimens it is important to discuss results provided by Soltangharaei et al. 

(2020). 

  The volumetric strain for the unconfined coarse specimen is smaller than the 

volumetric strain for the confined coarse specimen. However, as shown in Figure 4.1b, 

the strain in the unconfined Z direction is increasing at a rate that is comparable to the Y 

and Z direction of the confined specimen. Smaoui et al. (2014) also explained that 

aggregates with more surface area produce more expansive gel, and the expansion of ASR 

gel is what leads to microcracks and damage. If the larger and flatter aggregates are 

consolidated parallel to the casting direction, then it is likely that the depth (Z) direction 

will yield a larger, or more rapid, expansion (Smaoui 2014). The other directions in the 



www.manaraa.com

  

41 

unconfined specimen are the two lowest averages, so it is expected that there will be the 

least degradation/cracks in this direction. 

4.2.3: Strain Comparison 

  It is important to note that the coarse specimens were kept in the humidity chamber 

for a longer time that the fine specimens. In Figure 4.1a there is data that surpasses the 

entire duration of Figure 4.1c. In order to make an accurate comparison between the two 

tests, and to eliminate error, it is necessary to convert total days into a compatible time 

period. During each of the tests, the specimens were measured, and chamber maintenance 

was completed nearly every month. Therefore, the days shown in Figure 4.1 are not 

necessarily all days in which the specimens were subjected to high humidity. The periods 

in which the specimens were subjected to high humidity will hereinafter be recognized as 

“active days.” To solve this problem, the specimens will be compared using active days 

and similar strains because with these parameters, an accurate conclusion can be made. In 

Figure 4.1, at 210 days, the unconfined coarse specimen’s volumetric strain is .16%, while 

the confined coarse specimen’s volumetric strain is .29%. Also, the confined fine 

specimen’s last volumetric strain measurement is .21%, while the fine unconfined 

specimen’s last volumetric strain measurement is .16%. Above is Figure 4.2 that shows 
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the coarse specimen’s average directional strain up to 210 days and the fine specimen’s 

average strains up until its final measurement. Through active day manipulation, 210 days 

of coarse testing is equivalent to 233 days of fine testing. 

Noticeably, in the fine specimens, Figure 4.2b, there is little difference in the 

average directional strain at the final measurement, while there is a variety in the average 

directional strain values in the coarse specimens, Figure 4.2a. The values for the average 

directional strains can be seen in Table 4.1 below. The variance for each direction is also 

Table 4.1: Equivalent Final Average Directional Strain  

 
displayed and is discussed in the following paragraph.  

Notice, in Table 4.1, that the variance between the coarse specimen’s final average 

directional strains are more than ten times larger than the variance between the fine 

specimen’s final average directional strains. In addition, the coarse specimens have larger 

directional variances than the directional variances of the fine specimens. The similar 

directional strain observed in the fine specimen can be attributed to the fact noted by 

Smaoui et al. (2014) that aggregates with a larger surface area tend to produce more ASR 

  Direction 
X 

Direction 
Y 

Direction 
Z Variance Total 

Variance 

Coarse Confined 0.032 0.128 0.13 2.1𝑥10"% 

1.9𝑥10"% Coarse 
Unconfined 0.02 0.057 0.083 6.7𝑥10"5 

Fine Confined 0.052 0.085 0.076 1.9𝑥10"5 
1.6𝑥10"5 

Fine Unconfined 0.054 0.053 0.06 9.6𝑥10"6 
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gel. The smaller nature of fine aggregates means they are more likely to have similar 

surface areas in all directions, see Figure 4.3 for a depiction of the fine aggregate used to 

the coarse aggregate used in testing. Also, the gradation of fine aggregates (see Chapter 

3) is much smaller than the gradation of coarse aggregates, which verifies that the 

consolidation of aggregates in a certain direction would not matter in the case of reactive 

fine aggregates. In each direction, the fine aggregates have similar surface areas, while 

coarse aggregates are more likely to have different surface areas when oriented in different 

ways due to their larger gradation and sizes. This may explain the large variation in average 

directional strain in Figure 4.2a as opposed to the smaller variation in the fine specimen, 

shown in Figure 4.2b. This phenomenon is also the reason that the largest directional 

variance is observed in the confined coarse specimen. The anisotropic gel expansion of 

confined concrete leads to large expansions in certain directions (Y and Z in this case) and 

small expansions in others (X in this case). The unconfined coarse specimen still 

experiences the anisotropic expansion, but the lack of a boundary condition leads to a 

smaller variance than the confined specimen. The unconfined fine specimen shows the 

Figure 4.3: Aggregates used in Testing 

Non-Reactive Coarse Non-Reactive Fine Reactive Coarse Reactive Fine 
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smallest variance between directions; therefore, the unconfined fine specimen exhibits 

isotropic expansion.  

4.3: Acoustic Emission 

It is important to reiterate that the data presented in this chapter is representative of 

ASR specimens under an accelerated expansion process as they were placed in a chamber 

to expedite the reaction’s process speed. Dunant et al. (2012) outlined that aggregate size 

affects ASR in the preliminary life of concrete as opposed to the later stages of 

deterioration. Thus, data being discussed is only from the first 210 days of testing, for each 

coarse specimen, and 233 days of testing, for each fine specimen. The results are 

representative of early stage ASR damage. Above, in Figure 4.4 the cumulative signal 

strengths of each specimen along with amplitude hits are plotted over the duration of 300 

days for the coarse specimens and 233 days for the fine specimens.  
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Figure 4.4: Cumulative Signal Strength and Amplitudes versus Time

a) Confined Coarse b) Unconfined Coarse

c) Confined Fine d)  Unconfined Fine

Figure 4.4: CSS and Amplitude versus Time 
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4.3.1: Fine Specimens 

As seen in Figure 4.4 the two reactive fine aggregate specimens gathered a 

significant amount of acoustic emission data over the course of the test. The confined 

specimen accrued slightly more damage indication than the unconfined specimen. 

However, the difference between the final cumulative signal strength (CSS) of the two 

specimens is only 58%. The similar amount of data between the two specimens correlates 

with confinement playing a small role in the damage mechanisms of reactive fine 

aggregate. 

4.3.2: Acoustic Emission Comparison 

In order to accurately compare the acoustic emission data between tests, it is 

important to compare the data in terms of active days. This must be done because 1 day of 

testing the coarse specimens is not necessarily equal to one day of testing the fine 

specimens. Over the course of several months each test had its own run of problems, which 

is why showing the data in terms of days can be misleading. Although, the above plots in 

Figure 4.4 do accurately show the magnitude of damage that was accrued in the chamber 

over a given number of days, Figure 4.5 below is more accurate for comparison between 

the two tests. Like the strain section, 233 days of fine testing is equivalent to 210 days of 

coarse testing. The two coarse specimens are plotted until 210 days because a strain 

measurement was made on that day, so the strain is more accurate than it would be on a 

day between measurements. Figure 4.5 represents the acoustic emission data for all the 



www.manaraa.com

  

46 

specimens at the most accurate comparison point. It is also important to note that the data 

is not plotted versus active days, so the gaps observed in Figure 4.5 may represent long 

periods of chamber maintenance or no testing, or little damage. 

 The values of the cumulative signal strength at the final day plotted are of interest 

in this thesis. In both cases the confined specimens accumulate more data, or more activity, 

than the unconfined specimen. This phenomenon is explained by Soltanghareai et al. 

(2020). However, when analyzing this relationship with different reactive aggregate sizes, 

a new trend is apparent. The phenomenon shown above, using acoustic emission, has not 

been described in previous literature. In early stages of ASR expansion, the two specimens 

with reactive fine aggregates have relatively similar cumulative signal strengths (CSS), 

while the two reactive coarse aggregate specimens have a relatively large difference in 

Figure 4.5: CSS and Amplitude versus Adjusted Time 
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Figure 4.5: Cumulative Signal Strength and Amplitudes versus Adjusted Time

a) Confined Coarse b) Unconfined Coarse

c) Confined Fine d)  Unconfined Fine
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CSS. The reactive fine aggregate concrete experiences a small 58% difference in CSS (a 

difference of nearly 14 million pVs) between the two unconfined and confined specimens, 

while the reactive coarse aggregate concrete experiences a 543% difference in CSS (a 

difference of nearly 50 million pVs) between the two specimens. With a much smaller 

difference in CSS, the fine aggregate concrete proves to be significantly less affected by 

boundary conditions, in particular reinforced steel, than the coarse aggregate concrete. The 

expansion of gel surrounding fine aggregates is less affected by boundary conditions and 

Figure 4.5 shows this. In the unconfined fine specimen, there may be more AE activity 

because ASR gel that surrounds fine aggregates can expand similarly in all directions, no 

matter the boundary condition. The increase in AE activity can represent the presence of 

more microcracks and acoustic activity inside the unconfined fine specimen than the 

unconfined coarse specimen, even though the expansions are identical.  

 Expansion has typically been the most researched result of ASR degradation. 

However, the results in Figure 4.4 show that expansion does not necessarily fully represent 

early ASR damage. At 233 days in the RFAC and at 210 days in the RCAC both the 

unconfined specimens show a .16% volumetric expansion (Figure 4.1). At 233 days the 

unconfined fine specimen exhibits a CSS nearly of 3.1 times greater than that of the 

unconfined coarse specimen. The significant difference between the unconfined specimens 

is important because previous literature has described a large difference in ASR expansion 

based on aggregate size; Multon et al. (2010) describes a difference up to seven times. 

similar volumetric strains the confined coarse specimen does in fact show a greater 

cumulative signal strength than the confined fine specimen, but the opposite is true for the 
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unconfined specimens. See Chapter 4.6 for a more in-depth comparison of evaluation 

methods. 

4.4: Crack Growth 

As described in the experimental setup in Chapter 3, surface cracks were 

monitored and measured each time the specimens were taken out of the chamber for strain 

measurements. The first appearance of a surface crack, for the fine specimen testing, came 

on the September 25th (165 days after the specimens were placed in the chamber) 

measurement. The unconfined specimen had cracking, but on that day the confined fine 

specimen did not show any visual surface cracks. The coarse specimen crack measurements 

were completed in a similar manner. After 146 days the specimens began showing surface 

cracking and measurements were taken on subsequent strain measurement days. 

Figure 4.6: Confined Fine Crack 3 Width 
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The cracks were measured using the DinoScope software. In order to reduce error, 

each crack measurement is an average of at least three different widths of the same crack. 

Figure 4.6 exemplifies the software used to determine crack widths for each crack. 

 Each measurement was documented and is averaged to determine the width of each 

crack on the specimens. Each specimen’s cracks were kept track of, and the measurements 

can be seen in the plots below. Figure 4.7a and Figure 4.7b below show the maximum 

and average crack width on the coarse specimens up to 210 days in the chamber, while 

Figure 4.7c and Figure 4.7d show the maximum and average crack width on each 

specimen over the duration of the test (233 days). Still, as mentioned, 210 days of  
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coarse testing is like 233 days of fine testing, Table 4.2 displays the maximum crack widths 

of each specimen, and Figure 4.8 shows examples of the cracks on the surface 

of the specimens. Additionally, all the measurements for the coarse specimens were only 

taken from the top surface of the specimen. 

 Confined 
Coarse 

Unconfined 
Coarse 

Confined 
Fine 

Unconfined 
Fine 

Average Final Crack 
Width (mm) 

0.108 0.069 0.159 0.158 

Maximum Crack 
Width (mm) 

0.2 0.1 0.235 0.25 

Table 4.2: Maximum and Average Crack Widths 

a) Unconfined Fine at 233 Days b) Confined Fine at 233 Days 

c) Confined Coarse at 269 Days d) Unconfined Coarse at 269 Days 

Figure 4.8: Examples of Cracks on Concrete Surfaces 
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It is important to note that the maximum crack widths are not necessarily from the 

a single crack. For example, if the first identified crack has the largest width of all cracks 

on the specimen for one measurement, but on the next measurement day crack one does 

not have the largest width, then whatever crack width is the largest on the specimen is used 

as the maximum for that day. The magnification for each picture is also not necessarily 

similar; however, the measurements are accurate as the measurements take into account 

the different magnifications.  

4.4.1: Fine Specimen 

 The fine specimens have very similar crack sizes throughout the duration of 

testing, and the unconfined specimen has the largest crack width of all the specimens. 

These results align with previous sections and further enforce that boundary conditions 

play a small roll for reactive fine aggregates. This is evident in the small difference 

between the maximum widths and average widths of the fine aggregate specimens. 

4.4.2: Crack Growth Comparison 

Notice in Table 4.2 that the reactive fine aggregate specimens show larger averages 

and maximum crack widths than the reactive coarse aggregate specimen. These results are 

consistent with the acoustic emission and strain data presented in the previous section, 

except the maximum crack width seen was not in the confined coarse aggregate specimen. 

However, the maximum crack width of the coarse specimen is close to the maximums in 

the fine concrete. Opposite to the coarse testing, the fine testing resulted in a larger number 

of cracks in the unconfined specimen as compared to the confined specimen. The 

difference between the maximum crack widths confined and fine specimens is also of 

interest because it further highlights the correlation between boundary condition and 

aggregate size. Analyzing Figure 4.7 it is evident there is a smaller difference between the 
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maximum and average crack widths in the fine specimens than there is in the coarse 

specimens. This phenomenon coincides with the data shown in the acoustic emission 

section, where the unconfined fine specimen showed damage more similar to its confined 

counterpart than the unconfined coarse specimen showed as compared to its confined 

counterpart. The unconfined reactive fine aggregate concrete’s maximum cracks are of 

similar widths when compared to the confined reactive fine aggregate concrete’s (6% 

difference); however, the opposite is true when analyzing the coarse specimen’s maximum 

crack widths (100% difference).  Additionally, this trend is also apparent in the average 

crack widths of the entire surface of the concrete. The difference between the two fine 

specimens is significantly smaller than the difference between the two coarse specimens 

(.6% different to 38% different, respectively).  

4.5: Ultrasonic Pulse Velocity 

Ultrasonic pulse velocity (UPV) is another metric that can be used to understand 

the damage mechanisms inside concrete. The speed at which the pulse travels through the 

concrete is of interest. Based off initial control measurements, if a wave travels the same 

distance (the width of the concrete), at a slower speed, than the inside of the concrete is 

more degraded; therefore, it has more microcracks and damage, than it originally did. The 

direction of measurement of the wave travels is also of importance because it will outline 

how certain boundary conditions affect the wave speed. Table 4.3 shows the average time 

taken to travel through the concrete in each direction, and Figure 4.9 is a graphical 

depiction of the wave speeds of each fine specimen in different directions. 

As seen in the acoustic emission data, strain data, and crack growth data, it remains 

evident from Figure 4.9 that there is a similar amount of degradation when comparing the 

unconfined specimen to the confined specimen using UPV data. It is also clear that the 
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 Average Time (microseconds) Average Speed (m/s) 

Confined along Width 65.4 ± 0.58 4659 ± 21 
Confined along Height 67.8 ± 0.70 4588 ± 31 

Unconfined along Width 66.9 ± 0.65 4602 ± 39 
Unconfined along Height 67.1 ± 0.75 4591 ± 43 

Control along Width 64.6 ± 0.44 4722 ± 14 
Control along Height 64.4 ± 0.44 4729 ± 14 

 

wave speeds experienced by the control specimen are much higher than the wave speed of 

the reactive specimens. Therefore, UPV can accurately detect microcracking and interior 

damage due to ASR. The unconfined fine specimen has a slighly lower wave speed in the 

width (Y direction, by 1.23%) and a slightly larger wave speed in the height (Z direction, 

.05% difference), than the confined specimen. Therefore, in the Y direction there may be 

more microcracks and degradation in the unconfined specimen, but in the Z direction the 

opposite is true. The isotropic expansion of the fine aggregate ASR gel is what allows for 

this phenomenon to take place. There is little effect from the confinement, so in both 

specimens there is a similar wave speed and similar amount of damage. Therefore, it is 

Table 4.3: Average Speed and Direction of Pulse Wave 

Figure 4.9: Average Speed of Pulse Wave by Direction in Fine Specimen 
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accurate to see small differences in wave velocity when comparing the damage in each 

direction of each specimen.  

The direction of the UPV test is also important because the results still show how 

the confinement affects ASR internal expansion. The unconfined specimen shows very 

similar wave velocities in both observed directions, while the confined specimen shows a 

larger difference. This larger difference displays the effect that takes place due to the 

presence of a bounday condition.   

 Since the UPV results are very similar when comparing the unconfined and 

confined specimen, the hypothesis of this thesis is further solidified. Even with the error 

that can come with UPV testing, there is a clear trend exhibiting the emphasis confinement 

puts on expansion and degradation. In addition, the isotropic expansion of the ASR gel in 

reactive fine aggregate concrete is apparent, since the wave speeds between specimens are 

within 1.5% of each other. 

4.6: Evaluation Methods Comparison 

The methods investigated in this thesis each have their own pros and cons, but an 

evaluation of their effectiveness can help to further the body of knowledge surrounding 

ASR in concrete. Each of the testing methods is different, so in order to compare them, one 

must look at similar parameters in each. Each method has a relationship to the control 

specimens and each method has an amount of time before data is accrued. In terms of this 

thesis, a large percent difference between the final control data and the reactive specimen 

final data would mean that method is more effective, while a larger duration to acquire 

initial data points would mean that method is less effective. Therefore, dividing the percent 

difference by the time it takes to acquire meaningful data would yield an effectiveness 

value. This effectiveness value can then be normalized by taking each method and each 
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specimen (16 total values) and dividing each individual effectiveness by the maximum 

effectiveness. Averaging these values by test method will yield an average normalized 

effectiveness for each method (out of 100%), and show which evaluation method is the 

most effective. 

4.6.1: Strain 

The control specimens’ volumetric strain is plotted in Figure 4.10. As previously 

mentioned, the specimen that was tested alongside the reactive coarse specimens (the 

unconfined control) experienced some shrinkage, while the confined specimen little 

experienced initial expansion. The final volumetric strains for the reactive 

 specimens are clearly much different than the control specimens, which is expected in 

ASR specimens. However, as stated at the beginning of this chapter, another area of interest 

is the amount of difference that is shown by volumetric strain data. Table 4.4 shows the 

percent difference in volumetric strains from the control for each reactive specimen. It is 

apparent from Table 4.4 that strain measurements clearly represent the effects of early 

ASR expansion because there are relatively large differences in strain when comparing the 

reactive specimens to the control specimens. The control specimens reflect concrete that 

does not experience ASR; therefore, large percent differences reflect how effective each 

 Figure 4.10: Control Specimen’s Volumetric Strain 
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evaluation method is. In this case, strain measurements are the evaluation method and the 

results enforce strain as a strong evaluation method for early ASR. 

Table 4.4: Percent Differences (Strains) from Control to Reactive Specimens 

 
4.6.2: Acoustic Emission 

The control specimens’ AE data is shown in Figure 4.11. The confined control 

specimen was tested with unreactive aggregates and placed in the chamber while the 

reactive fine aggregate specimens were tested, so it is plotted for 233 days. The unconfined 

control specimen was tested with unreactive aggregates as well but tested while the reactive 

coarse aggregates were in the chamber. The unconfined control specimen is plotted for 210 

days. The final CSS for the confined control specimen was 4.6x106 pVs, and the final CSS 

for the unconfined control specimen was 1.8x106 pVs. In comparison to the reactive fine 

and coarse aggregate specimens, acoustic emission proves to be very effective at detecting 

early stages of ASR. The percent increases can be seen in Table 4.5. The smallest change 

 Confined 
Coarse 

Confined 
Fine 

Unconfined 
Coarse 

Unconfined 
Fine 

Difference from 
Control (%) 
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Figure 4.11: Cumulative Signal Strength and Amplitude vs Adjusted Time (Controls) 
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is 494%. Therefore, acoustic emission, and more particularly cumulative signal strength, 

is a strong identifier of early ASR damage. 

Table 4.5: Percent Differences (CSS) from Control to Reactive Specimens 

 Confined 
Coarse 

Confined 
Fine 

Unconfined 
Coarse 

Unconfined 
Fine 

Difference from 
Control (%) 

1360 742 494 1290 

 
4.6.3: Crack Growth 

 Crack growth measurements are very representative of how damaged concrete is in 

early stages of ASR, as well as other damage mechanisms. However, in this thesis there 

were no visual cracks seen on the control specimens, so in order to compare the 

effectiveness of crack growth measurements to the other evaluation methods one must 

observe the timeframe in which cracks began to appear on the reactive specimens. In the 

previous sections the effectiveness of each method was dependent on the percent difference 

in reactive data vs control data. Since there are no cracks on the control specimen, there 

needs to be another comparison metric. This metric is the time in which it took for cracks 

to be visualized. Table 4.6 shows how long it took for meaningful data to be seen in each 

reactive specimen. Investigating the amount of time before data can be gathered is an 

important factor when assessing effectiveness for different evaluation methods. The 

discussion about the methods comparisons can be seen at the end of this section. 

Table 4.6: Amount of Days Prior to First Meaningful Data 

 Confined 
Coarse 

Confined 
Fine 

Unconfined 
Coarse 

Unconfined 
Fine 

Days to First Crack 146 164 146 120 
First CSS Event 

(Days) 
82 63 86 69 

First Strain Change 
(Days) 

115 51 83 51 
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4.6.4: UPV 

Figure 4.9 shows the relationship between the wave speeds of each reactive fine 

aggregate as well as the confined control wave speed.  The wave speed of the coarse 

specimens will not be discussed in this section because there were no intermediate wave 

speed tests done for the coarse specimens, and the timeline would not be accurate for 

comparison. Therefore, the best investigation method for the UPV test is the percent 

difference in wave speed by direction between the confined fine specimen and the confined 

control. Table 4.7 shows this percent difference. See the following subsection for a 

comparison of all the evaluation methods. 

Table 4.7: Percent Difference (Wave Speed) from Control to Fine  

 Confined Fine (Z) Confined Fine (Y) 
Percent Difference in Wave Speed (%) 3 1.33 

 
Chapter 4.6.5: Effectiveness Comparison 

 Generally, all the aforementioned evaluation methods detect early ASR degradation 

to some extent, and they can all be utilized in the field. However, the effectiveness of each 

method differs, and the investigative research above outlines this. The contrast begins with 

understanding the difference in degradation metrics (acoustic emission hits, expansion, 

etc.) from beginning to end. The non-destructive test methods do not have data that 

represents any beginning because all initial data would be zero (no time for ASR would 

yield zero AE hits, zero expansion, and no crack formations). So, to counter this problem, 

the reactive data is compared to the data received from the non-reactive control specimens, 

which can represent structures not affected by ASR. Also, the methods being contrasted do 

not use similar units, so the best way to compare them is via percentages. The percent 

differences between these specimens helps to yield an understanding of the effectiveness 
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of each test method in comparison to each other. Effectiveness is first calculated by percent 

differences divided by time, and then it is normalized to percentages for comparison. 

 Effectiveness, in order to accurately compare the four different methods, is defined 

as each methods ability to monitor ASR in concrete in terms of severity and time. Severity 

is represented by the percent difference in final data between control specimens and 

reactive specimens. Time is represented by the amount of time each method needed in 

order to show meaningful data. Taking these considerations into account the author has 

developed a rank based on the results show and it is as follows: acoustic emission reflects 

early ASR most effectively (of the 4 methods considered), expansion/strain measurements 

are the second most effective, crack measurements are third, while UPV is the least 

effective, see Figure 4.12 for the normalized average effectiveness comparison. Acoustic 

emission has the largest minimum percent difference when comparing the acoustic events 

are happening very early and very often. Strain measurements are also very effective when 

it comes to early ASR detection; however, from the results discussed above it is clear that 
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expansion may not tell the whole story. For example, when each reactive unconfined 

specimen had the same volumetric strain (at .16%) the CSS’s were nearly 3.2 times 

different. So, acoustic emission may have the ability to understand interior degradation 

better than strain measurements. Crack measurements are incredibly effective, but they are 

third in this ranking system because of how long they may take to appear. While 

microcracks are forming inside the concrete it is very possible ASR goes unnoticed if a 

sole evaluation method is to wait for cracks to appear. Lastly, UPV is ranked last in this 

system because of its very low difference between the control wave speed and reactive 

specimen wave speed. UPV uses a low frequency pulse which may attribute to this low 

difference. UPV is not as reliable as the other methods discussed (Sargolzahi 2009). 



www.manaraa.com

  

61 

CHAPTER 5 

Summary and Conclusions 
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5.1: Summary of Test 

 An accelerated alkali-silica reaction (ASR) test was conducted on several concrete 

specimens with different stress boundary conditions and different reactive aggregates in 

order to understand the damage mechanisms that occur in the early stages of ASR. Multiple 

non-destructive testing was investigated. Simply, ASR is a chemical reaction that begins 

when concrete is initially mixed. It creates a microscopic gel that forms on the surface of 

interior aggregates inside concrete. This gel is hydroscopic and will expand as it is exposed 

to moisture, so ASR occurs often in areas with high humidity. Typically, ASR affected 

structures includes dams, ocean side structures, and nuclear power plants. The expansion 

from the gel forms internal microcracks and variable stress as it creates pressure as it 

expands.  

 The effect of aggregate size on ASR damage mechanisms has been discussed in 

literature and this is present from authors like Multon et al., and Dunant et al. However, 

analyzing the relationship using non-destructive methods using non-destructive methods 

such as acoustic emission is not present in the literature. Additionally, the addition of 

different confinement conditions provides an area of untapped potential for the growth of 

knowledge of ASR and concrete.  

 Acoustic emission (AE) is a recent and effective non-destructive method being used 

to understand damage in many areas of research. It is effective for concrete tests because 

it is highly sensitive and can detect small releases of energy. AE incorporates placing 

piezoelectric sensors on surfaces of specimens to determine the energies, frequencies, 

locations, and more of a variety of events that happen inside a structure. Acoustic emission 

is useful in concrete applications because it has the potential to detect microcracks and the 

growth of damage on the interior of concrete, non-destructively; therefore, AE can be 
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incredibly useful in understanding the damage mechanisms of ASR. In addition, strain 

measurements, crack growth measurements, and UPV analysis were also investigated as 

evaluation methods to analyze ASR damage mechanisms. 

 The experimental setup for this thesis consisted of 6 concrete test specimens, each 

with differing stress boundary conditions and reactive aggregate. There were 2 reactive 

coarse aggregate specimens, 2 reactive fine aggregate specimens, and 2 controls for each 

group. Each of the reactive aggregate groups had an unconfined and confined specimen. A 

confined specimen is a concrete specimen with reinforcing steel imposed inside, and 

unconfined has no reinforcement. The specimens were cast as rectangular beams with 

dimensions of 12” x 12” x 44”. Each specimen was placed in a high temperature and high 

relative humidity chamber for eight, or more, months to accelerate the ASR reaction. The 

specimens were constantly monitored by AE sensors while in the chamber. Monthly length 

change (strain) measurements were completed to gather expansion information, and once 

cracks began to form on the surfaces, the crack widths were measured and noted. In 

addition, an ultrasonic pulse velocity (UPV) test was completed at the beginning and end 

of the reactive fine aggregate specimen testing as another method to determine the interior 

degradation change experienced. The group of reactive fine specimens were tested 

subsequently after the reactive coarse specimens had resided in the acceleration chamber 

for nearly two years. 

5.2: Strain  

 In terms of strain and expansion, the average directional expansions of the 

reactive coarse aggregate specimens varied greatly, depending on directions. The reactive 

fine aggregate specimens had a very small variance when comparing directions. In 

conclusion, the strains of each specimen show that reactive fine aggregate concrete’s 
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expansion is dependent on confinement; it will expand in an isotropic manner without 

reinforcement, but in an anisotropic manner with reinforcement. Alternatively, the 

reactive coarse aggregate concrete expands in an anisotropic manner, no matter the 

confinement structure. 

5.3: Acoustic Emission  

In the acoustic emission results, the addition of a boundary condition leads to a 

large difference in ASR related damage between the two coarse specimens, but leads to a 

relatively small difference in ASR damage between the two fine specimens. The acoustic 

emission data shown is additional metric that describes a conclusion to this thesis’ objective 

of understanding the relationship between aggregate size and reinforcement: reactive 

coarse aggregate concrete expansion is affected by confinement more than reactive fine 

aggregate expansion is affected. This phenomenon could be a result of the isotropic 

expansion seen in the unconfined fine specimen. 

5.4: Crack Growth 

The crack meassurement results show that it is evident that reactive fine 

aggregate’s ASR products are significantly less affected by boundary conditions than 

reactive coarse aggregate’s ASR products are. Reactive coarse aggregate concrete 

exhibits greater large widths when a boundary condition is imposed, but small crack 

widths with the absence of a boundary condition. Reactive fine aggregate concrete shows 

similar crack widths in both cases. Clearly, the different types of expansion experienced 

by each type of aggregate are of importance when discussing crack growth related to 

ASR. 
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5.5: UPV 

Lastly, the UPV test performed on the reactive fine aggregate concretes shows that 

the unconfined fine specimen exhibits isotropic expansion. The control specimen showed 

a much higher wave velocity through each concrete direction, which also provides 

information that ASR damage can be detected by UPV tests. The wave speeds of the two 

directions of the unconfined specimen were nearly identical, which helps to solidify the 

statement that unconfined reactive aggregate specimen expands in an isotropic manner. 

5.6: Effectiveness of Evaluation Methods 

The methods investigated in this thesis were also compared in terms of 

effectiveness in order to compare each evaluation method. Effectiveness in this context 

takes into consideration the amount of time before data is received as well as the difference 

in final values from the final control specimen to the reactive specimens. The rank is as 

follows: acoustic emission (cumulative signal strength), expansion measurements, visual 

crack measurements, and UPV. Acoustic emission and CSS reflect early ASR most 

effectively, while UPV was the least effective method of the four investigated. 

5.7: Additional Conclusions 

This study was completed to begin in understanding the complicated relationship 

between reactive aggregate size and boundary condition when exposed to ASR damage 

mechanisms. Additionally, it was completed to investigate the effectiveness of certain non-

destructive evaluation methods. A clear relationship is shown in the results of this thesis, 

but there is more that can be understood through further research on this subject. Acoustic 

emission has endless possibilities and should be further used in ASR research. 

Additionally, the subject of interest in this thesis should also be investigated using other 

methods of testing like coring and petrography.  
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